Common pitfalls in training and evaluating recommender systems
https://doi.org/10.1145/3137597.3137601
4種普遍發生在訓練,評估推薦系統的陷阱。
- 訓練資料集受到原有算法影響
- 測試資料集受到原有算法影響
- CTR高不代表平台收入也會增加
- 推薦系統不見得額外增加平台收入
1. INTRODUCTION
略過
2. A TYPICAL PROCEDURE OF PREPARING TRAINING AND TEST DATASETS
Figure 1. 以時間軸說明常見的train/test切法
\(t_{0} - t_{1}:沒有推薦系統的時期\)
\(t_{1}:初版推薦系統R_{orig}開始上線運作\)
\(t_{1} - t_{s}:訓練集\)
\(t_{s} - t_{2}:測試集\)
3. ISSUE 1: TRAINED MODEL COULD BE BIASED TOWARD HIGHLY REACHABLE PRODUCTS
3.1 The core problem
產品\(p_{i}\)頁面上若出現產品\(p_{j}\)的直接連結,很多使用者很可能會點擊\(p_{i}\)之後點擊\(p_{j}\)。
\(p_{i} \rightarrow p_{j}會產生很強的正向關係\)
Thus, the information \(p_{i}\) → \(p_{j}\) (or more formally, (\(x_{i}\) = \((x_{i,1}=p_{i}),p_{j})\) as a positive training instance) may become a strong positive signal simply because it is extremely easy to reach \(p_{j}\) from \(p_{i}\)
但其實二商品間並沒有相關。
As a result, the linked products may be little relevant to the current browsing product.
最終會導致新的推薦系統推出商品是因為過去受到layout影響所產生的易觸及商品。
As a result, the recommendation algorithms are likely to output the highly reachable products, which is highly influenced by the layout of the product pages.
3.2 Selecting proper training data
作者提出的解決方法: 降低商品和易觸及商品之間的權重
we should weaken the weights of the positive instances in which next clicked product is highly reachable.
3.3 Experiment
作者將訓練集設計成2種:
train-all: 原始訓練集
train-sel: 拿掉\(p_{j}\)是包含易觸及商品的訓練樣本
Table 2. 可以觀察到2種不同訓練集所產出的推薦結果中,易觸及商品的佔比差異。
3.4 Lessons learned
根據點擊紀錄訓練的推薦系統很有可能會學習到layout和現行算法的推薦規則。
As a result, training a recommender system based on the clickstreams are likely to learn (1) the “layout” of the pages, and (2) the recommendation rules of the online recommender system.
理想解決方法,訓練集內只保留用戶主動觸及的商品,排除促銷商品(易觸及商品)以及現行推薦系統產生的商品
Ideally, we should keep only the spontaneous clicks in the log to, at least partially, solve or bypass this issue.
4. ISSUE 2: THE ONLINE RECOMMEN-DATION ALGORITHM AFFECTS THEDISTRIBUTION OF THE TEST DATA
4.1 The Core problem
使用者沒機會點擊到原有算法沒推薦到的商品集.
the online users have no chances to click on the products that appear only in \(L_{new}\) but not in \(L_{orig}\).
4.2 Selecting proper test data
if a product \(p_{k}\) appears in \(L_{new}\) but not in \(L_{orig}\), the product \(p_{k}\) is less likely to be clicked even though \(p_{k}\) might be a great recommendation given the context feature \(xi\).
作者提出的解決方法: 測試集內只保留用戶主動觸及的商品,排除促銷商品(易觸及商品)以及現行推薦系統產生的商品
4.3 Experiment
略過
4.4 Lessons learned
過往研究都用上了全部的測試資料集,導致有利於原有算法,我們應該要小心挑選測試集以得到公平的評估.
Previous studies sometimes use all the available test dataas the ground truth for evaluation. Unfortunately, such anevaluation process inevitably favors the algorithms that sug-gest products close to the online recommendation algorithm.We should carefully select the test dataset to perform a fairer evaluation.
5. ISSUE 3: CLICK THROUGH RATES AREMEDIOCRE PROXY TO THE RECOM-MENDATION REVENUES
5.1
多數研究都採用CTR和其他算法比較. CTR指標是屬於user-centric,用來評估使用者對推薦的滿意程度. 也因為業界不願意提供收益相關數據,研究都只能透過提昇user-centric measures(CTR)來代表business-centric measures(Revenue)的提昇. 但是這並沒被仔細驗證.
5.2 Experiment
略過
5.3 Lessons learned
得到很多點擊,並不確保能讓平台帶來大量的收入
As a result, even if a recommendation algorithm attracts many clicks, we cannot assure this algorithm will bring a large amount of revenue to the website.
6. ISSUE 4: EVALUATING RECOMMENDATION REVENUE IS NOT STRAIGHTFORWARD
6.1 The core problem
有可能推薦系統對用戶而言,只是方便尋找他要的東西,即便沒有推薦系統,用戶透過網站上其他途徑找到該商品.
It is possible that the recommendation modules are served as a convenient tool for users to locate the desired items, but even without the recommendation module, the users can still discover these items through another user interface provided by the website.
6.2 Experiment
略
6.3 Lessons learned
最極端的案例是電商公司可以將整個頁面塞滿推薦,然後宣稱100%的收益都從推薦而來XD,顯然地是讓人誤導的作法.
In an extreme case, an EC company can fill in the entire page with recommendations and claim that nearly 100% of their revenue comes directly from recommendations. Apparently, such a claim is misleading.
好的驗證方法要透過A/B testing.但這在學術界很難進行.
To proper evaluate the extra revenue contributed by a recommender system, we still need to leverage on A/B testing. Unfortunately, it is very difficult for the researchers in academia to perform A/B testing in practice.
7. RELATED WORKS
7.1 Common metrics to evaluate recommender systems
只專注在CTR,會讓算法傾向推薦熱門商品.
A simple way to measure accuracy is click through rate – in what percentage a user clicks a recommendation [10]. However, such a metric may favor the algorithms that tend to recommend popular items, because recommendation accuracy usually declines towards the long tail [25].
研究指出,加上考慮 diversity 可以提昇用戶對推薦的滿意程度.而diversity和accuracy無法二者兼顧,需要視需求決定.
Diversity and accuracy are usually a trade-off. One can easily increase diversity by recommending unrelated items, but this usually sacrifices the accuracy.
7.2 Reviewing Previous Competitions and Publications
作者提到過往比賽,透過點擊資料去建立推薦模型,但問題是會推薦出highly reachable items. 所以比賽開始採用線上測試來驗證模型的好壞.
點擊行為和購買行為完全不一樣.作者以文獻[13]說明,2種行為是可以透過分類器分開.用戶會透過推薦內容持續地點擊,但這並不代表會購買.
8. DISCUSSION AND FUTURE WORK
略過